TY - CONF A1 - Vogl, Jochen A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, J. E. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, A. A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. T1 - Interlaboratory comparison on conventional 87Sr/ 86Sr isotope ratio analysis by applying MC-ICP-MS and MC-TIMS N2 - The variation of isotope ratios is increasingly used to unravel natural and technical questions. With new upcoming techniques and research topics in the last two decades, such as material provenance or food authenticity to animal and human migration studies, the number of published isotope data has strongly increased. Here, isotope reference materials are indispensable to enable a reliable method validation or even SI-traceability. The fast development and broad availability of inductively coupled plasma mass spectrometry instrumentation (ICP-MS) also lead to an expansion of the classical research areas and new elements are under investigation. Owing to this large expansion of the field, the production and certification of isotope reference materials for calibration and validation is lagging behind, even for classical applications such as conventional 87Sr/86Sr isotope ratio analysis. To improve this situation, BAM organized an interlaboratory comparison (ILC) comprising of thirteen international laboratories for the characterisation of 87Sr/86Sr isotope ratios in geochemical and industrial reference materials. Six reference materials (four cements and two rocks) were provided as powder requiring extensive sample preparation prior to isotopic measurement. Additional requirements included the use of the conventional method for obtaining 87Sr/86Sr isotope ratios, also known as radiogenic 87Sr/86Sr isotope ratios, and the assessment of the measurement uncertainty. The primary goal was to evaluate potential differences in the application of multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) for conventional 87Sr/86Sr isotope ratio determination, with a secondary goal to provide reference values for the 87Sr/86Sr isotope ratios in these potential new reference materials. All reported results are accompanied by an uncertainty statement and are traceable to the conventional method, which will be described in detail within this presentation. Current state-of-the-art statistical models were used to ensure the proper evaluation of the reported results and their associated measurement uncertainties within the frame of this ILC. Combined with results from appropriate homogeneity assessment, reference values for 87Sr/86Sr isotope ratios will be assigned. T2 - European Winter Conference on Plasma Spectrochemistry CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Conventional isotope ratio KW - Reference material KW - Uncertainty KW - Comparability PY - 2023 AN - OPUS4-58011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -