TY - CONF A1 - Simon, Fabian A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - HR-CS-GFMAS as a new screening method for emerging pollutants – per- and polyfluoroalkyl substances (PFASs) in the environment N2 - Per- and polyfluorinated alkyl substances (PFASs) are a group of several thousand individual compounds. Many PFASs are extremely persistent, bioaccumulative and toxic. The analysis of PFASs is challenging because of their various chemical and physical properties as well as the high number of compounds. Target-based approaches (e.g., LC-MS/MS) are limited to the availability of analytical grade standards and are not suitable for the analysis of new/unknown PFASs and transformation products. Therefore, PFAS sum parameter methods become increasingly important to indicate realistic PFAS pollution levels. PFAS sum parameters display the proportion of organically bound fluorine that can either be extracted (EOF) or adsorbed to activated carbon (AOF). For the instrumental analysis of such sum parameters, a fluorine selective detector is needed. High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) is a sensitive and highly selective tool for fluorine determination. The method is based on the in situ formation of diatomic gallium-mono fluoride (GaF) in a graphite furnace at a temperature of 1550°C. The molecular absorption of GaF can be detected at its most sensitive wavelength at 211.248 nm providing limits of quantification of c(F) 2.7 µg/L. In the present work a HR-CS-GFMAS method for EOF analysis was utilized for suspended particulate matter (SPM) analysis in German rivers in time lines from 2005–2020. Therefore, time and spatial resolved trends were investigated. In addition, SPM samples were analyzed for the Σ41PFAS using target analysis based on UHPLC-HRMS. Overall, target analysis drastically underestimated the total PFAS burden in SPM of German rivers compared to the EOF HR-CS-GFMAS analysis. Using a fluorine mass balance approach, only 0.2% to 38.6% of the EOF was explainable using the Σ41PFAS determined with target analysis. Our study highlights the need to integrate PFAS sum parameters (e.g., EOF with HR-CS-GFMAS) in PFAS risk assessment strategies. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - PFAS KW - HR-CS-GFMAS KW - Fluorine KW - SPM PY - 2022 AN - OPUS4-56392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -