TY - CONF A1 - Lecompagnon, Julien T1 - Nondestructive defect characterization using full frame spatially structured super resolution laser thermography N2 - Laser-based active thermography is a contactless non-destructive testing method to detect material defects by heating the object and measuring its temperature increase with an infrared camera. Systematic deviations from predicted behavior provide insight into the inner structure of the object. However, its resolution in resolving internal structures is limited due to the diffusive nature of heat diffusion. Thermographic super resolution (SR) methods aim to overcome this limitation by combining multiple thermographic measurements and mathematical optimization algorithms to improve the defect reconstruction. Thermographic SR reconstruction methods involve measuring the temperature change in an object under test (OuT) heated with multiple different spatially structured illuminations. Subsequently, these measurements are inputted into a severely ill-posed and heavily regularized inverse problem, producing a sparse map of the OuT’s internal defect structure. Solving this inverse problem relies on limited priors, such as defect-sparsity, and iterative numerical minimization techniques. Previously mostly experimentally limited to one-dimensional regions of interest (ROIs), this thesis aims to extend the method to the reconstruction of twodimensional ROIs with arbitrary defect distributions while maintaining reasonable experimental complexity. Ultimately, the goal of this thesis is to make the method suitable for a technology transfer to industrial applications by advancing its technology readiness level (TRL). In order to achieve the aforementioned goal, this thesis discusses the numerical expansion of a thermographic SR reconstruction method and introduces two novel algorithms to invert the underlying inverse problem. Furthermore, a forward solution to the inverse problem in terms of the applied SR reconstruction model is set up. In conjunction with an additionally proposed algorithm for the automated determination of a set of (optimal) regularization parameters, both create the possibility to conduct analytical simulations to characterize the influence of the experimental parameters on the achievable reconstruction quality. On the experimental side, the method is upgraded to deal with two-dimensional ROIs, and multiple measurement campaigns are performed to validate the proposed inversion algorithms, forward solution and two exemplary analytical studies. For the experimental implementation of the method, the use of a laser-coupled DLP-projector is introduced, which allows projecting binary pixel patterns that cover the whole ROI, reducing the number of necessary measurements per ROI significantly (up to 20x). Finally, the achieved reconstruction of the internal defect structure of a purpose-made OuT is qualitatively and qualitatively benchmarked against well-established thermographic testing methods based on homogeneous illumination of the ROI. Here, the background-noise-free twodimensional photothermal SR reconstruction results show to outclass all defect reconstructions by the considered reference methods. T2 - Öffentliche wissenschaftliche Aussprache an der Technischen Universität Berlin CY - Berlin, Germany DA - 31.10.2023 KW - Thermography KW - Super resolution KW - NDT KW - Material testing KW - Internal defects KW - DMD KW - DLP PY - 2023 AN - OPUS4-58771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -