TY - CONF A1 - Bulling, Jannis A1 - Gravenkamp, Hauke T1 - A Combination of the Scaled Boundary Finite Element Method with the Mortar Method N2 - The simulation of ultrasonic waves in a linearly elastic body can be computationally intensive. The reason is the relatively short wavelength compared to the body size for high frequencies. One possible approach to counteract the high computational costs is to decompose the domain into small parts and strive for parallelization. The Mortar Method is a well-established approach for domain decomposition. A rather new approach to discretize the emerging subdomains is the Scaled Boundary Finite Element Method. This semi-analytical method has many attractive properties. Some of these properties are listed subsequently. The grid consists of polygonal elements, which leaves much freedom in the meshing process. A variety of material distributions, including anisotropic materials, can be considered. High-order shape functions can be used for optimal convergence properties. The approach treats singularities at crack tips and corners analytically. Especially in the frequency domain, the Scaled Boundary Finite Element Method reduces the dimension of the approximation because only degrees of freedom which are associated with the boundary of a polygonal element are necessary. Those desirable properties make the method particularly suitable for calculating the dynamic responses in bodies with cracks, as it is essential for many non-destructive testing and structural health monitoring applications. In this contribution, we present a combination of the Scaled Boundary Finite Element Method with the Mortar Method in two dimensions. The presentation starts with a theoretical overview of both approaches. Subsequently, numerical examples demonstrate the stability of the combination for the polygonal boundary of the elements. The numerical examples increase in complexity and are compared to results computed on non-divided domains with the Finite Element Method. T2 - WCCM-ECCOMAS CONGRESS CY - Online meeting DA - 11.01.2021 KW - Ultrasound KW - Numerical Simulation KW - Scaled Boundary Finite Element Method, Mortar Method PY - 2021 AN - OPUS4-52275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -