TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Multielemental analysis of MIC organisms grown on solid steel samples by means of single cell-ICP-ToF-MS N2 - Inductively coupled plasma-time of flight-mass spectrometry (ICP-ToF-MS) enables the analysis of the multi-element fingerprint of individual cells due to a (quasi-)simultaneous detection of about 70 elements of the periodic table. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed which ensures the analysis of intact cells. It allows the studies of archaea at a single cell level which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. T2 - DGMS Young Scientists Fall Meeting 2022 CY - Hünfeld, Germany DA - 28.09.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development PY - 2022 AN - OPUS4-55910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -