TY - CONF A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Electrochemistry coupled to mass spectrometry for biotransformation and metabolite elucidation of pesticides N2 - Online coupling of electrochemistry with mass spectrometry (EC/MS) is highly promising for prediction and simulation of metabolic processes of xenobiotics in living organisms. Less time and cost of analysis, matrix free detection, and automation make EC/MS-based metabolomics superior over traditional in-vivo and in-vitro methods. Furthermore, EC/MS has a special feature to identify reactive intermediates and reaction mechanisms. The main objective of this work was to simulate biotransformation processes of pesticides by EC/MS and to elucidate the Transformation products (TPs). We have studied the oxidative phase I metabolism processes of selected pesticides by EC/MS or with liquid chromatography (EC/LC/MS) and compared the derived TPs with cytochrome based metabolites. The electrochemical TPs were produced by boron-doped diamond electrode, separated by LC, and detected by single quadrupole ESI-MS online. Structural identification of both electrochemical oxidation and liver microsome metabolites were based on accurate mass measurements by FT-ICR high-resolution mass spectrometry, isotopic pattern, MS/MS fragmentation, and Retention time alignments. Main phase I oxidative metabolites by P-oxidation, N- & O- dealkylation, dechlorination, hydroxylation, and -OH- oxidation have been identified. Many targeted and untargeted metabolites have been identified by EC/(LC)/MS. Additionally, reactive species have been trapped online by biomolecules to study phase II conjugative reactions. Furthermore, we synthesized TP standards by EC/MS and applied them for pesticide's TPs occurrence investigation in foodstuf matrices. T2 - European Mass Spectrometry Conference (EMSC) 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Transformation product KW - EC/LC/MS KW - Pesticide KW - Biotransformation KW - Electrochemical oxidation PY - 2018 AN - OPUS4-44495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -