TY - RPRT A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Benismail, Nizar A1 - Altmann, Korinna T1 - Project 2: Interlaboratory Comparison on detection and quantitative assessment of microplastics by use of spectroscopic and thermo-analytical methods T2 - VAMAS TWA 45 “Micro- and Nano Plastics in the Environment” N2 - Validated and standardized methods in microplastic analysis are indispensable for robust monitoring and regulation. Alongside also reference materials are urgently needed. An interlaboratory comparison (ILC) offers a powerful tool to address both these challenges. The present study aimed to compare the precision and accuracy of various methods for the detection and quantification of microplastic in a water-soluble matrix. Additionally, it evaluated the suitability of the test materials (containing environmentally relevant plastic polymers) to serve as reference materials for the microplastic analysis. In this ILC several most used thermo-analytical and spectroscopic methods have been addressed: Pyrolysis-Gas Chromatography Mass Spectrometry (Py-GC/MS), Thermal Extraction-Desorption Gas Chromatography Mass Spectrometry (TED-GC/MS), micro-Fourier Transform Infrared Spectroscopy (µ-FTIR), and micro-Raman Spectroscopy and Laser Direct Infrared Spectroscopy (LDIR). Microplastic powders of polyethylene (PE) and polyethylene terephthalate (PET) were used to assess suitability of the test materials (microplastic tablets) for method validation and use in the ILCs. The participants were guided with a SOP how to dissolve the test samples and, depending on their selected method, either quantify the number of particles (by the spectroscopic methods) or determine the mass fraction of microplastic particles per sample (by the thermo-analytical methods). KW - ILC KW - Microplastic KW - FTIR KW - Raman KW - TED-GC/MS KW - Py-GC/MS PY - 2024 SP - 1 EP - 16 AN - OPUS4-60612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -