TY - GEN A1 - Neumann, Patrick P. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Aerial robot KW - TDLAS KW - Gas tomography KW - Plume PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/46478 AN - OPUS4-46478 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany