TY - GEN A1 - Carl, Peter A1 - Schneider, Rudolf T1 - A wash-free, multiplex microbead assay for determination of emerging bioactive compounds in wastewater N2 - Pollutants of low molecular weight, such as drug residues, are in the focus of water quality assessment: some of them, like carbamazepine are only partially degraded in wastewater treatment plants. Thus, these pollutants can serve as marker substances for elimination efficiencies. Monitoring water quality demands for selective, high-throughput and multi-target analytical methods. Immunoassays, such as ELISA, offer the possibility to be highly sensitive and selective due to the specific recognition by high affinity of target molecules to antibodies (Abs). Batch-wise processing in microtiter plates allows for the necessary high-throughput, however only a single analyte can be determined within one measurement. To overcome these disadvantages, we developed a four-plex microbead-based flow cytometric assay, which is adaptable for the microtiter plate format. The modular and self-prepared bead support consists of polystyrene-core/silica-shell particles. While, the polystyrene core is used for encoding, by introducing different amounts of fluorescent dyes, the silica shell creates a solid support for the immunoassay: The target analytes, three drugs, carbamazepine, diclofenac and caffeine and the fecal marker isolithocholic acid are coupled covalently to the surface via NHS chemistry to amino groups on the surface. For determination of the pollutants, a mixture of specific Abs is incubated with the samples, to bind competitively on the “anchor” molecules on the surface of the beads or the analyte in solution. Bound antibodies are then visualized via fluorescent dye-labelled secondary Abs. Flow-cytometry allows for decoding of the beads and signal read-out, without washing the system. In order to decrease non-specific binding, we investigated different types of surface modifications, finding, that a PEG-based surface is suitable to support our immunoassay format. For maximum sensitivity, a design-of-experiment approach was chosen for optimization of the assay parameters. The resulting immunoassay is appropriate to quantify the pollutants in the low μg/L-range. T2 - EBS 2017 CY - Potsdam, Germany DA - 20.03.2017 KW - Immunoassay KW - Bead-based assay KW - Flow-cytometry PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/39522 AN - OPUS4-39522 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany