TY - GEN A1 - McMahon, Dino Peter T1 - Evolution, recombination and virulence of emerging bee viruses N2 - Bee populations have declined significantly in recent years and this is thought to be attributable at least in part to the (re-)emergence of viruses. These viruses are predominantly positive single stranded (+ss) RNA viruses belonging to the Picornavirales. Managed honeybees are often infested with the invasive mite, Varroa destructor, which vectors RNA viruses including Deformed wing virus (DWV, family Iflaviridae): a leading culprit of colony losses. Many bee viruses have been sequenced and structural features are now available for viruses such as DWV. DWV consists of at least 3 distinct genotypes, two of which have been shown to be differentially virulent in honeybees. Molecular studies have demonstrated that DWV has a mean evolutionary rate of 1.35 x 10-3 per site per year. For such viruses – in contrast to their eukaryotic hosts – ecological and evolutionary timescales significantly overlap. This rapid evolution allows RNA viruses to adapt quickly to novel host environments with recombination representing an additional key source of genetic variation. Interestingly, recombination between genotypes of DWV has recently been shown to be a common occurrence in honeybees. A challenge has been to develop bioinformatics tools that can accurately reconstruct viral haplotypes – including recombinants – from heterogenous high-throughput sequence data. The impact of blood-to-blood Varroa destructor transmission on virus evolution represents an important question in bee virus research. Due to the nature of the V. destructor life cycle, predictions can be made about the potential impact of the mite on virus virulence evolution. Specifically, the developing honeybee host pupa should remain alive until close to the completion of metamorphosis to provide sufficient time for successful mite reproduction, including offspring mating. For optimal transmission, any virus found in a mature and mated daughter mite will hold a significant selective advantage over a virus found in an immature or unmated daughter mite – placing a cost on virus virulence that impacts honeybee pupae before mites can mate. On the other side, viruses replicating too slowly and with delayed virulence effects will hold a selective handicap because fewer transmission units will be found in mated mites. I have hypothesized that the evolution of virus virulence shifted following the arrival of V. destructor, with viruses, including recombinants and/or specific viral genotypes being selected for a level of virulence in pupae (and likely also in adults) that maximises R0, which represents the basic reproductive number of the virus in the host population. R0 is defined by the number of subsequent infections caused by a single infection and it must be greater than 1 for an infection to spread in a population. It is enhanced by maximising the number of transmission units passed to uninfected susceptible vectors, and ultimately hosts (Figure 1). Honeybee viruses are also shared with sympatric wild bees and viral prevalence and sequence data indicate frequent virus transmission between managed and wild bee species. In addition to infecting the western honeybee (Apis mellifera), DWV can infect other Asian honeybee species such as Apis ceranae. Outside of honeybees, DWV has been found widely in bumblebees, including solitary bees and wasps and there is evidence that it can actively replicate in several Bombus and solitary bee species. Whether the arrival of the V. destructor mite in A. mellifera has driven viral emergence in non-Apis bees is a target of ongoing research. T2 - 2nd European Virus Bioinformatics Centre (EVBC) conference CY - Utrecht, Netherlands DA - 09.05.2018 KW - Virus KW - Virulence KW - Bees PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/47155 AN - OPUS4-47155 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany