TY - CONF A1 - Berchtold, Florian A1 - Forell, B. A1 - Krause, U. T1 - Probabilistic set of filter criteria in the frame of Fire PSA T2 - International workshop on fire PRA N2 - Filter criteria in the Frame of Fire PSA identify compartments in a first qualitative analysis for which the contribution to the overall core damage frequency of the NPP is negligible. The aim of the filter criteria is to reduce the number of compartments to be analysed precisely in Fire PSA. One example for filter criteria is the 'fire load criterion'. By the fire load criterion compartments with a fire load density of less than 90 MJ/m² are 'screened out' which means to exclude them from a precise analysis in Fire PSA. Neither the justification of the particular value of 90 MJ/m² is well documented nor does this criterion take into account varying compartment configurations such as ventilation conditions, physical and chemical properties of the fire load as well as compartment characteristics. A probabilistic set of filter criteria was developed to overcome the restrictions of the fire load criterion. In line with the 'fire load criterion', the probabilistic set of filter criteria assumes that a compartment can be screened out if a fire is not able to cause any damage to other components within the compartment. Therefore, the electrical failure of an electrical cable conservatively represents the damages of all components. It is assumed that the electrical cable failure occurs when the maximum cable temperature exceeds an experimentally determined failure temperature. The maximum cable temperature that can occur in a compartment fire is mainly influenced by the four significant factors: 1. inlet air stream of the mechanical ventilation, 2. the fire growth rate, 3. the compartment floor area and 4. the compartment height. A parameter study revealed how the significant factors affect the maximum cable temperature in fictitious compartment fires. The results of the parameter study are transferred on true Nuclear Power Plant compartments. However, it is not possible to determine precisely the occurrence of an electrical cable failure because of uncertainties in the maximum cable temperature and the failure temperature. The probabilistic set of filter criteria considers these uncertainties and determines the probability of cable failure for true compartments to be screened in Fire PSA. Finally, a compartment can be screened out in Fire PSA if the failure probability exceeds a predefined accepted threshold value for the failure probability. The theoretical application of the methodology is shown at the end of the paper. T2 - International workshop on fire PRA CY - Garching, Germany DA - 28.04.2014 PY - 2014 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/31316 AN - OPUS4-31316 SP - Paper 1-3 EP - 1-15 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany