TY - GEN A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cifci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Polydopamine micropatterning for selective substrate bio-functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) exhibits strong adhesion to nearly any kind of organic or inorganic surface and shows high ability for surface post-modification and secondary reactions. As a result, PDA has been widely used as a base adlayer to enable versatile surface chemistry and functionalization. It has shown great potential in wide range of applications including biomedical field (e.g., drug delivery, adhesives, photothermal therapy, bone and tissue engineering, cell adhesion, biosensing). However, implementation of PDA in microdevices is still hindered by insufficient spatial and temporal control of excited deposition methods. In this work we present a novel approach to fabricate tunable micropatterned substrates where mussel-inspired chemistry provides base for various surface modification [2]. Current approach applies Multiphoton Lithography (MPL) to initiate local PDA formation, and, therefore, does not require use of microstamp or photomask. As a result, the microstructures of complex designs can be produced with the spatial resolution down to 0.8 μm (Figure 1). The desired design can be easily altered by adjusting the stl model or the fabrication code. Unlike the conventional deposition of PDA based on dopamine auto-oxidation, our method does not require presence of strong oxidants, metal ions or alkaline pH. Herein-demonstrated deposition approach will significantly facilitate applications of polydopamine and other mussel-inspired materials in microdevices and high-resolution active microcomponents (e.g., in MEMS and microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we performed PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We tested different composition of dopamine solution for its ability of PDA buildup. Solutions containing Tris buffer, phosphate buffer or DI water only as well as different pH (6.0, 7.0 and 8.5) could be successfully applied for high-precision PDA micropatterning. Moreover, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. In all cases, no decrease of deposition efficiency was observed. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. T2 - Laser Precision Microfabrication CY - Dresden, Germany DA - 07.06.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/55064 AN - OPUS4-55064 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany