TY - GEN A1 - Mrkwitschka, Paul T1 - Fine iron oxide nanoparticles as a candidate reference material for reliable measurement of particle size N2 - Background, Motivation and Objective Nanomaterials are at the core of some of the 21st century’s most promising technologies. In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important. Furthermore, the European Commission has taken measures via the REACH Regulations to control the classification of nanomaterials. REACH Annexes which entered into force in January 2020 require manufacturers to register nanomaterials that are traded in larger quantities (at least 1 ton). Every powder or dispersion where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as a nanomaterial. This creates a need for both industrial manufacturers and research and analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is working on developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution, but also targeting other key parameters such as shape, structure (including porosity) and functional properties. Thus, candidate materials are considered to complement the already available spherical and monodisperse silica, Au and polystyrene reference nanoparticles, e.g. iron oxide and titanium oxide, with an average atomic number between those of silica and gold. Particularly for the imaging by electron microscopies, new nanoparticles of well-defined size in the range of 10 nm are decisive for the accurate particle segmentation by setting precise thresholds. Statement of Contribution/Methods Synthesis: Highly monodisperse iron oxide nanoparticles can be synthesized in large quantities by thermal decomposition of iron oleate or iron acetylacetonate precursors in high boiling solvents such as octadecene or dioctyl ether in the presence of oleic acid and oleylamine as capping agents. Scanning Electron Microscope: An SEM of type Supra 40 from Zeiss has been used including the dedicated measurement mode transmission in SEM (STEM-in-SEM) with a superior material contrast for the nanoparticle analysis. The software package ImageJ has been used for the analysis of the STEM-in-SEM images and to determine the particle size distribution. Dynamic Light scattering (DLS): Particles in suspension were measured in comparison by means of Zetasizer Nano (Malvern Panalytical; cumulants analysis) and NanoFlex (Microtrac; frequency power spectrum). Results/Discussion In this study iron oxide nanoparticles synthesized at BAM and pre-characterized by DLS, SEM (including the transmission mode STEM-in-SEM) are presented. The particles are spherical and highly monodisperse with sizes slightly larger than 10 nm. T2 - Nanosafe 2020 CY - Online meeting DA - 16.11.2020 KW - Reference nanomaterials KW - Imaging techniques KW - Size and size distribution KW - Reliable characterization KW - Iron oxide nanoparticles PY - 2020 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/51767 AN - OPUS4-51767 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany