TY - CONF A1 - Duwe, M. A1 - Florian, C. A1 - Fischer, Daniel A1 - Freiberg, K. A1 - Sahre, Mario A1 - Schneider, S. A1 - Hertwig, Andreas A1 - Krüger, Jörg A1 - Rettenmayr, M. A1 - Beck, Uwe A1 - Undisz, A. A1 - Bonse, Jörn T1 - Thickness Profiling of the Superficial Amorphization and Re-Crystallization of Silicon Induced by Femtosecond Laser Pulses N2 - Crystalline Silicon undergoes a complex phase-change dynamic of melting, amorphization, ablation and re-crystallization upon irradiation with high intensity ultra-short laser pulses [1]. The final state of such a modified surface spot depends on many factors, most notably the local fluence and the surface’s crystal orientation. In this study, we induced superficial structure and phase changes in Silicon <111> and <100> wafers using single femtosecond laser pulses (790 nm, 30 fs) for a range of different peak fluences. The resulting surface modifications were studied in great detail using a number of different techniques, including spectroscopic imaging ellipsometry (SIE), atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray spectroscopy within scanning transmission electron microscopy (STEM-EDX). Playing a pivotal role in this work, SIE provided non-destructive measurements for the calculation of the radial amorphous layer-thickness profiles of the irradiated spots using a two-layer thin-film model (Silicon dioxide and amorphous Silicon on a crystalline Silicon substrate). The measurements further allowed for the analysis of the oxide-layer modifications induced by the laser treatment. The results of the SIE-calculations were cross-checked by an in-depth material lamella via HRTEM and STEM-EDX. T2 - 11th Workshop Ellipsometry (WSE 11) CY - Steyr, Austria DA - 06.09.2021 KW - Femtosecond Laser KW - Spectroscopic imaging ellipsometry KW - Amorphization KW - Ablation KW - Re-crystallization PY - 2021 AN - OPUS4-53363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -