TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of Elemental Composition of Fe1-xNix and Si1-xGex Alloy Thin Films by EPMA and μ-XRF JF - Microscopy and Microanalysis N2 - The present study reports on measurements on thin Fe-Ni films on silicon and first-time results of analysis on Si-Ge thin films deposited on a non-conductive aluminium oxide Substrate by electron probe microanalysis (EPMA). Standard-based and standardless EPMA (with EDS) results were used in combination with the thin film analysis software Stratagem for the quantification. Further, X-ray fluorescence analysis (XRF) can be used for the determination of elemental composition and thickness of such films as well. In this case, XRF with a μ-focus X-ray source (μ-XRF) attached to a SEM was applied. For quantification, a fundamental parameter (FP) approach has been used to calculate standard-based and standardless results. Both thin film systems have been chosen as samples of an international round robin test (RRT) organised in the frame of standardisation technical committee ISO/TC 201 ‘Surface chemical analysis’, under the lead of KRISS. The main objective of the RRT is to compare the results of atomic fractions of Fe1-xNix and Si1-xGex alloy films obtained by different surface Analysis techniques, such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) applied in the depth-profiling operation mode. Five samples of different atomic fractions of each thin film system, i.e., Fe1-xNix and Si1-xGex, have been grown by ion beam sputter deposition on silicon and Al2O3 wafers, respectively. Reference FeNi and SiGe films with well-known elemental composition and thickness have been also supplied for standard-based analysis. An excellent agreement has been obtained between the atomic fractions determined by EPMA and µ-XRF with the KRISS certified values.zeige mehr KW - Thin film analysis KW - EPMA KW - XRF KW - Fe-Ni KW - Si-Ge PY - 2019 DO - https://doi.org/10.1017/S1431927619009668 VL - 25 SP - 1786 EP - 1787 PB - Cambridge University Press AN - OPUS4-49245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -