TY - CONF A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Kühne, Hans-Carsten T1 - One-part geopolymers and geopolymer-zeolite composites based on silica: factors influencing microstructure and engineering properties N2 - Mixing and curing of geopolymers and related alkali-activated materials without storage and handling of highly alkaline solutions possesses advantages regarding safety and economic viability; one possible approach is to produce these materials from solid silica feedstocks and solid sodium aluminate, and subsequent mixing with water. We present a comparison between geopolymers and geopolymer-zeolite composites synthesized by this route from different silica feedstocks (by-product silica from chlorosilane production, microsilica, rice husk ash) and with different SiO2/Al2O3 ratios, using results from XRD, NMR, SEM, thermal analysis, mechanical and acid resistance testing. The use of rice husk ash favors formation of a fully amorphous geopolymer with high strength. Utilization of the other silica feedstocks leads to formation of geopolymer-zeolite composites, the amount and kind of zeolites depending on the feedstock and the SiO2/Al2O3 ratio. These composites show beneficial dehydration behavior, viz. no distinct dehydration step of thermal strain, with the phase assemblage after heating to 1000 °C controlled by the starting composition. Mortars produced from both, the geopolymers as well as the compo¬sites, exhibit high resistance to sulfuric acid attack, making them promising materials for the construction and the repair of industrial and sewer structures. T2 - 42nd International Conference and Expo on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - Alkali-activated materials KW - Geopolymers KW - Acid resistance KW - High-temperature resistance PY - 2018 AN - OPUS4-44145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -