TY - CONF A1 - Altmann, Korinna A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Ricking, Mathias A1 - Bannick, Claus-Gerhard A1 - Braun, Ulrike T1 - Freshwater compartments: Screening method for polymer identification and mass contents of microplastic particles using TED-GC-MS N2 - The pathways of plastics, especially of microplastic (MP), in environmental compartments, particularly in aquatic systems, are not well understood. The critical point is the lack of fast, harmonised methods for sampling, sample preparation and sample analysis. These three analytical steps are dependent on one another and must be optimised. In recent years, we developed a method for representative sampling and fast detection of MP in aqueous systems. The sampling in different freshwater bodies is performed in the field with a fractionated filtration system using mesh sizes of 500, 100 and 50 µm. For water with an intermediate or high content of suspended particular matter a minimum of 1000 L has to be filtered. In the lab, mesh sizes of 10 and 5 µm are used for further filtration. Subsequently, the water filtrates of the different particle size classes are sterilised, dried, weighed and homogenised, if necessary. Conventional methods for MP analysis are infrared and raman spectroscopy, giving information on the shapes and numbers of individually identified MP particles. Our focus is on the determination of mass contents of various polymers potentially contained in environmental samples. For qualitative and quantitative MP detection TED-GC-MS is used, a two-step method based on gas chromatography-mass spectrometry (GC-MS) with previous thermal extraction. This method not only enables us to screen the samples for characteristic marker-molecules, thus identifying single polymers, but furthermore allows the calculation of mass contents of individual polymers. In the present work, different freshwater compartments were exemplarily studied to identify containing polymers and calculate their mass content in MP particles. T2 - MICRO2018 CY - Lanzarote, Spain DA - 19.11.2018 KW - Microplastic KW - TED-GC-MS KW - Mass contents PY - 2018 AN - OPUS4-46739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -