TY - GEN A1 - Weinel, Kristina T1 - Electron-beam-induced synthesis and characterization of disordered plasmonic gold nanoparticle assemblies N2 - Several studies have been shown that the electron beam can be used to create nanomaterials from microparticle targets in situ in a transmission electron microscope (TEM). Here, we show how this method has to be modified in order to synthesize plasmonic gold nanoparticles (NPs) on insulating silicon oxide substrate by employing a scanning electron microscope with a comparatively low acceleration voltage of 30 kV. The synthesized NPs exhibit a random distribution around the initial microparticle target: Their average size reduces from 150 nm to 3 nm with growing distance to the initial Au microparticle target. Similarly, their average distance increases. The synthesized NP assemblies therefore show distinctly different plasmonic behaviour with growing distance to the target, which allows to study consequences of random hybridization of surface plasmon in disordered system, such as Anderson localization. To reveal the surface plasmons and their localization behaviour we apply electron energy loss spectroscopy in the TEM. T2 - DPG spring conference, condensed matter section CY - Berlin, Germany DA - 17.03.2024 KW - Scanning electron microscopy KW - Gold nanoparticle synthesis KW - Disordered assemblies KW - Localized plasmons PY - 2024 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/59763 AN - OPUS4-59763 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany