TY - GEN A1 - Fedelich, Bernard T1 - Constitutive modeling and lifetime prediction for a conventionally cast Ni-base superalloy under TMF loading N2 - Under cyclic thermomechanical loading, various effects such as strain accumulation, creep damage, ageing, fatigue etc. may occur in the material of a gas turbine blade. Depending on the loading conditions, all these effects contribute to reduce the lifetime of the component. Subject of the present work is the development of a material model to describe the mechanical effects mentioned above and to subsequently predict lifetimes by using simulated stress strain data. Starting point for deformation modeling is the well known viscoplastic model after Chaboche, which provides descriptions of isotropic and kinematic hardening, as well as dynamic and static recovery. The evolution equation for kinematic hardening model has been modified following the proposal of Ohno/Wang to better predict stress controlled cyclic strain accumulation, i.e. ratchetting. A damage variable has been included to represent tertiary creep according to the concept of Kachanov. Finally, the static recovery has been modified following Kindrachuk to account for strain induced ageing. The models parameters have been calibrated using isothermal test data only. The constitutive model has been validated by comparing experimental with predicted TMF stress-strain hystereses. Lifetime prediction is done with the TMF lifetime model proposed by Riedel. The model assumes that fatigue life is controlled by the propagation of short cracks. Besides pure fatigue, it takes the local creep deformations at the crack tip into account. The model is applied to a broad variety of isothermal and non isothermal tests over temperatures up to 950°C and different loading conditions. The evaluation shows that throughout satisfying results can be achieved using a limited number of model parameters for the whole test data base. T2 - 3rd International Workshop on Thermo-mechanical fatigue CY - BAM, Berlin, Germany DA - 27.04.2016 KW - TMF KW - Nickel base superalloy KW - Fatigue life assessment KW - Constitutive law PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/35994 AN - OPUS4-35994 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany