TY - CONF A1 - Bayerlein, Bernd A1 - Zia, Ghezal Ahmad A1 - Schilling, Markus A1 - Waitelonis, J. A1 - v. Hartrott, P. A1 - Hanke, T. A1 - Skrotzki, Birgit T1 - Towards interoperability: Digital representation of a material specific characterization method N2 - Certain metallic materials gain better mechanical properties through controlled heat treatments. In age-hardenable aluminum alloys, the strengthening mechanism is based on the controlled formation of nanometer sized precipitates, which hinder dislocation movement. Analysis of the microstructure and especially the precipitates by transmission electron microscopy allows identification of precipitate types and orientations. Dark-field imaging is often used to image the precipitates and quantify their relevant dimensions. The present work aims at the digital representation of this material-specific characterization method. Instead of a time-consuming, manual image analysis, a digital approach is demonstrated. The integration of an exemplary digital workflow for quantitative precipitation analysis into a data pipeline concept is presented. Here ontologies enable linking of contextual information to the resulting output data in a triplestore. Publishing digital workflow and ontologies ensures the reproducibility of the data. The semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. T2 - TMS - 7th World Congress on Integrated Computational Materials Engineering (ICME) CY - Orlando, Florida, USA DA - 21.05.2023 KW - Ontology KW - Semantic Interoperability KW - Digtial Representation KW - Data Management KW - Reproducibility KW - FAIR PY - 2023 AN - OPUS4-57548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -