TY - GEN A1 - Agudo Jácome, Leonardo T1 - 3D Reconstruction, Visualization and Quantification of Dislocations from TEM Stereo-Pairs N2 - Dislocations, as carriers of plastic deformation, affect important properties in technical materials, e. g., plasticity. The realistic description of plastic deformation caused by dislocations demands the representative measurement of their features, e.g., line direction, slip plane, Burgers vector and density. Bulk deformation of structural and functional alloys requires reliable data from large regions. The filiform nature of dislocations interacting with complex microstructures additionally demands observation and analysis techniques that allow resolving the details of their interactions in space. The use of electron tomography for this purpose is bound to difficult and time consuming experimental setups, which are not always applicable to any material. In this contribution a new tool is presented, which enables the three-dimensional reconstruction, visualization and quantification of dislocation densities and directions from manual tracing of scanning transmission electron microscopy (STEM) stereo-pairs. Examples are shown from samples of a creep-deformed monocrystalline Ni-base superalloy. T2 - 3D Materials Science 2016 CY - St. Charles, Illinois, USA DA - 10.07.2016 KW - Dislocation KW - Scanning Transmission Electron Microscopy KW - 3D KW - Quantification KW - Superalloy PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/42173 AN - OPUS4-42173 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany