TY - JOUR A1 - Secker, C. A1 - Brosnan, S.M. A1 - Limberg, F.R.P. A1 - Braun, Ulrike A1 - Trunk, M. A1 - Strauch, P. A1 - Schlaad, H. T1 - Thermally induced crosslinking of poly(N-propargyl glycine) T2 - Macromolecular chemistry and physics N2 - As polypeptoids become increasingly popular, they present a more soluble and processable alternative to natural and synthetic polypeptides; the breadth of their potential functionality slowly comes into focus. This report analyzes the ability of an alkyne-functionalized polypeptoid, poly(N-propargyl glycine), to crosslink upon heating. The crosslinking process is analyzed by thermal analysis (differential scanning calorimetry and thermogravimetric analysis), Fourier-transform infrared, electron paramagnetic resonance, and solid-state NMR spectroscopy. While a precise mechanism cannot be confidently assigned, it is clear that the reaction proceeds by a radical mechanism that exclusively involves the alkyne functionality, which, upon crosslinking, yields alkene and aromatic products. PB - Wiley-VCH Verl. CY - Weinheim KW - Fourier-transform infrared KW - Metal-free crosslinking KW - Polypeptoid KW - Propargyl KW - Solid-state NMR PY - 2015 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/35265 AN - OPUS4-35265 SN - 1022-1352 SN - 1521-3935 VL - 216 IS - 21 SP - 2080 EP - 2085 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany