TY - JOUR A1 - Dümichen, Erik A1 - Braun, Ulrike A1 - Kraemer, R. A1 - Deglmann, P. A1 - Senz, R. T1 - Thermal extraction combined with thermal desorption: A powerful tool to investigate the thermo-oxidative degradation of polyamide 66 materials T2 - Journal of analytical and applied pyrolysis N2 - Using thermogravimetric analysis (TGA) with a solid-phase adsorber for thermal extraction, followed by subsequently analysing the adsorber with thermo-desorption gas chromatography mass spectrometry (TDS-GC–MS) enables measurement of polymer degradation under oxidizing atmosphere, and the identification of certain complex hydrocarbon degradation products by chromatographic separation and defined mass patterns. This technique, thermal-extraction desorption gas chromatography mass spectrometry (TED-GC–MS) was used to investigate the thermo-oxidative degradation of PA 66 and PA 66 doped with 2 wt% of metal oxide particles. In TGA pure PA 66 formed more residue under an oxidizing atmosphere than an inert one. In contrast to the measurements under inert atmosphere, several condensed aromatic species containing nitrogen could be identified in thermo-oxidative measurements. These degradation products were formed through condensation reactions of primary amides originating from imide hydrolysis. The formation of such highly condensed species also causes higher char formation. Four metal oxides have shown an impact on the thermo-oxidative degradation of PA 66: Fe2O3 on η-Al2O3 < pure Fe2O3 = Fe2O3 on γ-Al2O3 < pure ZnO. For ZnO even a char-stabilizing effect could be observed. A catalytic effect of these metal oxides causes more condensed cyclopentanone and pyridine derivates. Thus, more water is formed and released, resulting in increased hydrolysis of the imides and degradation at lower temperatures. PB - Elsevier B.V. CY - Amsterdam KW - PA 66 KW - Metal oxide particles KW - Thermo-oxidation KW - Thermogravimetry KW - Solid-phase extraction PY - 2015 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/34338 AN - OPUS4-34338 SN - 0165-2370 SN - 1873-250X VL - 115 SP - 288 EP - 298 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany