TY - JOUR A1 - Häberle, Nicolas A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Falkenberg, Rainer A1 - Kahlcke, Ole T1 - Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel T2 - Comptes Rendus Mecanique - Computational methods in welding and additive manufacturing/Simulation numérique des procédés de soudage et de fabrication additive N2 - The sound numerical prediction of welding-induced thermal stresses, residual stresses, and distortions strongly depends on the accurate description of a welded material’s thermomechanical deformation behaviour. In this work, we provide experimental data on the viscoplastic deformation behaviour of a grade-s960ql steel up to a temperature of 1000 ◦C. In addition, a multi-phase viscoplastic material model is proposed, which accounts for the experimentally observed isothermal deformation behaviour of grade-s960ql steel base and austenitised material, as well as for athermal contributions that originate from solid-state phase transformations. The multi-phase viscoplastic and a classic rateindependent isotropic hardening material model were applied in the numerical simulations of both-ends-fixed bar Satoh tests and a single-pass gas metal arc weld. The influence of material modelling choices on the agreement between numerical simulation and experimental results is discussed, and recommendations for further work are given. PB - Elsevier Masson SAS KW - Residual stress KW - Viscoplasticity KW - Material modeling KW - Grade S960QL steel PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/46512 AN - OPUS4-46512 VL - 346 IS - 11 SP - 1018 EP - 1032 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany