TY - CONF A1 - Markötter, Henning A1 - Sintschuk, Michael A1 - Dayani, Shahabeddin A1 - Mishurova, Tatiana A1 - Mehta, B. A1 - Eddah, Mustapha A1 - Mieller, Björn A1 - Böttcher, Nils A1 - Krug von Nidda, Jonas T1 - In situ tomographic imaging with hard x rays at Bamline (BESSY II) N2 - The BAMline at the synchrotron X-ray source BESSY II (Berlin, Germany) is supporting researchers especially in materials science [1]. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography (SXCT) with hard X-Rays, plays an important role in structural 3D characterization. The imaging capabilities allow for in-situ and operando experiments. In this presentation the equipment, data handling pipeline as well as various examples from material science are presented. In series-connected lithium-ion cells are susceptible to an electrical safety hazard called over-discharge. Here the behavior of copper dissolution and deposition during over-discharge is presented, which leads to irreversible loss of capacity and internal short circuits. The concentration of dissolved and deposited copper is quantified. Also, a non-uniform distribution pattern of copper deposition on the cathode is shown. The second example deals with an Al alloy 7017 customized for a 3d-printing process by means of laser-based powder bed fusion (PBF-LB) technique. These advanced alloys have a significantly higher modulus of elasticity than conventional Al alloys, making them attractive for applications requiring high stiffness. SXCT during In-situ tensile tests confirmed that fracture initiation strongly depends on defects created during printing. However, the cracks are deflected from decohesion around inclusions/precipitates embedded in the Al matrix, increasing ductility. Low temperature cofired ceramic (LTCC) multilayer housings offer 3D-circuits for a wide range of applications in telecommunications, microsystems and sensor technology. Such housings are produced by combining structured and metallized ceramic layers using tape-casting and multilayer technology. The characterization of the integrity, deformation, defects, and positioning of the internal metal features was carried out using in-situ SXCT at up to 950°C. A high-precision nail penetration tool was developed to characterize the mechanically induced thermal runaway (TR) of lithium-ion battery (LIB) cells in a dynamic temperature range down to -190 °C. To investigate safety-specific low-temperature transport conditions, the damaged cells were tomographically imaged during thawing. T2 - ICTMS - International Conference on Materials and Structures 2024 CY - Cape Town, South Africa DA - 01.07.2024 KW - Synchrotron radiation KW - X-ray tomography KW - Li-ion battery PY - 2024 AN - OPUS4-60658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -