TY - JOUR A1 - Zocca, Andrea A1 - Wirth, Cynthia A1 - Mühler, T. A1 - Günster, Jens T1 - Powder-bed stabilization for powder-based additive manufacturing T2 - Advances in mechanical engineering N2 - The most successful additive manufacturing (AM) technologies are based on the layer-by-layer deposition of a flowable powder. Although considered as the third industrial revolution, one factor still limiting these processes to become completely autonomous is the often necessary build-up of support structures. Besides the prevention of lateral shifts of the part during the deposition of layers, the support assures quality and stability to the built process. The loose powder itself surrounding the built object, or so-called powder-bed, does not provide this sustenance in most existent technology available. Here we present a simple but effective and economical method for stabilizing the powder-bed, preventing distortions in the geometry with no need for support structures. This effect, achieved by applying an air flow through the powder-bed, is enabling an entirely autonomous generation of parts and is a major contribution to all powder-based additive manufacturing technologies. Moreover, it makes powder-based AM independent of gravitational forces, which will facilitate crafting items in space from a variety of powdery materials. PB - Hindawi Publishing Corporation CY - New York, NY ; Cairo KW - Additive manufacturing KW - Powder bed PY - 2014 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/31424 AN - OPUS4-31424 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-314244 SN - 1687-8132 SN - 1687-8140 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 2014 SP - 491581-1 - 491581-6 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany