TY - CONF A1 - Fedelich, Bernard A1 - Butz, Adam A1 - Rehmer, Birgit A1 - Mäde, Lucas A1 - Vöse, Markus T1 - Experimental and analytical investigation of Low Cycle Fatigue Damage at notches in a polycrystalline Nickel base superalloy N2 - Turbine blades often contain cylindric holes used to generate an air film that protects the blade alloy from the hot gases. These cooling holes of diameter around one mm are drilled by laser through the thickness of the blades. Unfortunately, the resulting stress concentration and the drilling-induced damage are known to favor crack initiation from the holes. It is thus necessary to assess the impact of these cooling holes on the structural integrity of the blades. Since cracks initiate very readily, the fatigue life of the components is mainly controlled by the propagation of the cracks in the stress gradient induced by the holes. For this purpose, displacement controlled high-temperature LCF (Low-Cycle-Fatigue) tests were performed with center hole specimens of a coarse-grained Nickel base Superalloy. The tests were stopped after a defined load drop. In addition, crack propagation tests with Double Edge Notch specimens were performed. Moreover, specimens with different hole surface finishes were investigated, which showed a detrimental effect of the hole surface roughness. In parallel, an evaluation of the LCF tests based on a fracture mechanics-based model (Madia et al., Eng. Fract. Mech., 2018) has been applied. Thereby, the specimen life is controlled by the crack propagation time until failure. Crack growth is controlled by a modified NASGRO equation accounting for large-scale yielding and a progressive build-up of crack closure. The initial crack size has been derived from the measurements of defects around the borehole. A reasonable agreement between predicted and measured lifetimes is observed if one keeps in mind the large uncertainty regarding the effective shape of the cracks. T2 - 23rd European Conference on Fracture CY - Funchal, Madeira, Portugal DA - 27.06.2022 KW - Nickel-base superalloys KW - Notches KW - LCF PY - 2022 AN - OPUS4-55338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -