TY - GEN A1 - Blaeß, Carsten T1 - Crack healing in glasses N2 - Fundamental understanding of crack healing in glassy crystalline materials is very important for many applications, especially for solid oxide fuel cells (SOFC) sealants since cracks caused by mechanical stress or thermal cycling still remain a substantial bottleneck in developing durable SOFC. Previous studies on soda lime silicate glass published by Singh showed that crack healing is driven by viscous flow. There he postulated that the healing progress is proportional to time, t, and the inverse viscosity. This finding would allow to present for a given glass data of crack healing measured at different temperatures in a master curve, if the healing progress is plotted versus t/η. Such master curves would be a helpful tool in understanding crack healing kinetics. To verify the applicability of such master curves, crack healing in non-crystallizing soda-lime-silicate (NCS) and sodium-borosilicate glasses (NBS) was studied. Cracks were generated by Vickers indention and healed isothermally at different temperatures. Crack healing progress was monitored by optical and electron microscopy. The results show that the above mentioned proportionalities applies to the two glasses. In both cases the afore developed master curve could be obtained. T2 - 91. Jahrestagung HVG-DGG CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Crack healing PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/41347 AN - OPUS4-41347 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany