TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Gröber, Andre A1 - Böllinghaus, Thomas A1 - Kranzmann, Axel T1 - Corrosion fatigue of 1.4542 exposed to a laboratory saline aquifer water CCS-environment T2 - Energy Procedia N2 - X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ∼ 30 Hz). Due to the rather heterogeneous fine machined surfaces (Rz=4) the specimens are comparable with prefabricated parts. X5CrNiCuNb16-4 reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa and lies 60% below the stress amplitude measured in air. The scatter range TN = 1:34 is disproportionately large. Although the fracture surface exhibited the typical striations and corroded surface areas no significant differences were found. The hardness was found to be homogeneous in all specimens tested at 335 HV10. Non-metallic inclusions were found within the microstructure, but no correlation could be found between the inclusions and early rupture. Still specimens that showed inclusions at the fracture surface and its cross section endured lower number of cycles. Additionally Aluminium was analysed in specimens with low number of cycles and may be cause for early rupture during corrosion fatigue tests. These findings reveal a very high sensitivity on a homogeneous microstructure upon the corrosion and corrosion fatigue behaviour of X5CrNiCuNb16-4 and needs to be taken into account when regarding this steel as pipe steel during injection of CO2 into saline aquifers. T2 - 13th International Conference on Greenhouse Gas Control Technologies CY - Lausanne, Switzerland DA - 14.11.2016 KW - Steel KW - Corrosion fatigue KW - Electrochemistry KW - Reliability KW - CCS KW - CO2-storage PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/41852 AN - OPUS4-41852 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418525 SN - 1876-6102 VL - 114 SP - 5219 EP - 5228 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany