TY - GEN A1 - Agudo Jácome, Leonardo T1 - Experimental study on M23C6 nucleation and growth mechanisms in Ni-base superalloy single crystals N2 - The addition of carbon to Ni-base superalloy single crystals has been increasingly carried out to improve low angle grain boundary (LAGB) resistance and castability. Consequently, the precipitation of carbides is highly probable during long-term application of components subjected to higher temperatures (> 1000 °C). While the view on the role of carbides as strengthening or detrimental is polemical, their inevitable increased presence in carbon-doped alloys must be addressed. In the present work, the evolution of M23C6 carbides forming in the commercial grade Ni-base superalloy LEK 94 during high-temperature and low-stress creep exposure is assessed. Although carbon is not intentionally added to the LEK 94 alloy, it admits up to 0.1 at. %, which together with the high content of M23C6-forming transition metals, leads to their precipitation. The precipitation is induced here during creep experiments at 1020 °C and a nominal applied stress of 160 MPa along [001]. The correlation of precipitation and external load is carried out by evaluating the carbides in the gage section of parallel and circularly notched cylindrical samples, as well as in their heads. Characterization is made by transmission electron microscopy (TEM). Although primary MC carbides form mostly in interdendritic regions during casting, high temperature exposure induces M23C6 carbide nucleation especially in the γ phase of dendritic regions, where a stronger partitioning of refractory elements is present. The carbides have a needle shape with their main axis on 〈100〉 and a cube-on-cube orientation relationship. They present incoherent {100} facets along their elongated region and semi-coherent {111} facets at their ends. Their nucleation and growth mechanisms are discussed based on microstructural observation under different experimental conditions. T2 - Modelling and Simulation of Superalloys. International Workshop. CY - Bochum, Germany DA - 29.03.2017 KW - Ni-base superalloy KW - Single cystal KW - Creep KW - Carbide KW - Scanning transmission electron microscopy (STEM) PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/40249 AN - OPUS4-40249 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany