TY - GEN A1 - Kratzig, Andreas T1 - Interaction of oxidizing and reductive components in CO2 fluids in transport pipelines (X70) at low temperature N2 - Carbon Capture Utilization and Storage (CCUS) is a promising technology for the reduction of CO2 emissions, e.g. from fossil-fuel operated power plants or cement mills. Crucial points for a sustainable and future-proof CCUS procedure are reliability and cost efficiency of the pipeline transport network. Due to the absence of certified benchmarks for upper limits, systematic experiments with impurities in the CO2 stream were carried out. For oxidation processes SO2 and NO2 acted as corrosive components, and for reductive atmosphere H2S. Carbon steel L485MB (pipeline), martensitic steel 1.4313 (compression) and austenitic steel 1.4562 (injection) were selected as specimens. Experiments were performed at 1 bar or 100 bar and within a temperature range 278 K ≤ T ≤ 313 K. High-alloyed Cr-Ni steels revealed no corrosion (1.4562, 1.4313), while for carbon steel considerable corrosion was observed. The type and intensity of corrosion was strongly coupled with the applied corrosive species and the level of humidity in the CO2 stream, leading to different compositions of acidic condensates. Applying a reducing atmosphere results in very little corrosion rates, but provokes pitting corrosion. In contrast, oxidizing or mixed settings lead to a clearly increased growth of the corrosion layer, but exhibit shallow uniform corrosion. Exceptional nitric acid results in intergranular corrosion. T2 - EUROCORR 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - CCS KW - Pipeline transport KW - CO2 corrosion KW - Condensation KW - Carbon steel PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/41919 AN - OPUS4-41919 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany