TY - GEN A1 - Bresch, Sophie T1 - Material development for oxide multilayer generators N2 - Thermoelectric generators can be used for energy harvesting by directly transforming a temperature gradient into a voltage. Multilayer generators based on low-temperature co-fired ceramics technology (LTCC) are an interesting alternative to conventional π-type generators. They exhibit several advantages like high filling factor, possibility of texturing, co-firing of all materials in one single-step, and reduction of production costs due to the high possible degree of automation. Pressure-assisted sintering enables the theoretical possibility of co-firing two promising oxide thermoelectric materials: Ca3Co4O9 (p-type) and CaMnO3 (n-type). Due to the large difference in sintering temperature (300 K) the process is very challenging. In this work we show the material development of Ca3Co4O9, CaMnO3, insulation and metallization for multilayer generators co-fired under pressure at 900 °C. The materials are tailored regarding their sintering behavior, electrical performance and coefficients of thermal expansion. Different generator designs (unileg and pn-type) were fabricated and analyzed regarding crack formation, interaction layers and thermoelectric performance. Simulated stresses during cooling in the multilayers are compared with actual crack formation for different sintering conditions. This study shows that a lower pressure level and a lower level of complexity are beneficial for co-firing and performance. T2 - 45th International Conference and Expo on Advanced Ceramics and Composites (ICACC 2021 Virtual) CY - Online meeting DA - 08.02.2021 KW - Thermoelectrics KW - Multilayer PY - 2021 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/52462 AN - OPUS4-52462 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany