TY - JOUR A1 - Dümichen, Erik A1 - Barthel, Anne-Kathrin A1 - Braun, Ulrike A1 - Bannick, Claus Gerhard A1 - Brand, K. A1 - Jekel, M. A1 - Senz, R. T1 - Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method T2 - Water research N2 - Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification. PB - Elsevier Ltd. CY - Amsterdam KW - Microplastic KW - Identification and quantification of polymers KW - Thermogravimetric analysis KW - Evolved gas analysis KW - Gas chromatography mass spectroscopy PY - 2015 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/34337 AN - OPUS4-34337 SN - 0043-1354 VL - 85 SP - 451 EP - 457 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany