TY - JOUR A1 - Dümichen, Erik A1 - Javdanitehran, M. A1 - Erdmann, Maren A1 - Trappe, Volker A1 - Sturm, Heinz A1 - Braun, Ulrike A1 - Ziegmann, G. T1 - Analyzing the network formation and curing kinetics of epoxy resins by in situ near-infrared measurements with variable heating rates T2 - Thermochimica Acta N2 - Near-infrared spectroscopy (NIR) turned out to be well suited for analyzing the degree of cure for epoxy systems. In contrast to dynamic scanning calorimetry (DSC), where the released heat of reaction determines the degree of epoxy conversion indirectly, NIR spectroscopy is able to determine the conversion directly by analyzing structural changes. Therefore, a new heatable NIR cell was equipped with an integrated thermocouple, which enables the real sample temperature to be controlled and monitored in situ during epoxy curing. Dynamic scans at different heating rates were used for kinetic modelling, to define kinetic parameters and to predict real curing processes. The kinetic models and their parameters were validated with an isothermal and a more complex multi-step curing scenario. Two available commercial epoxy systems based on DGEBA were used with an anhydride and with an amine hardener. NIR results were compared with DSC data. The simulated conversion predicted with a model fitted on the basis of NIR and DSC dynamic scans showed good agreement with the conversion measured in the isothermal curing validation test. Due to the proven reliability of NIR in measuring the reaction progress of curing, it can be considered a versatile measurement system for in situ monitoring of component production in the automotive, aerospace and wind energy sectors. PB - Elsevier CY - Amsterdam KW - Epoxy resins KW - Curing kinetics KW - Near-infrared spectroscopy KW - DSC PY - 2015 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/34187 AN - OPUS4-34187 SN - 0040-6031 SN - 1872-762X VL - 616 SP - 49 EP - 60 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany