TY - GEN A1 - Kjaervik, Marit T1 - Exploring the capabilities of NAP-XPS: Application to metal-organic frameworks, nanoparticles and biofilms N2 - Near-ambient pressure XPS makes it possible to characterise samples not compatible to ultra-high vacuum, and enables the study of liquid-solid, gas-liquid and gas-solid interfaces. NAP-XPS meas-urements of biofilms, suspended nanoparticles and metal-organic frameworks were performed with EnviroESCA developed by SPECS. An interesting application is surface characterisation of biofilms, which are bacterial communities embedded in a self-produced polysaccharide matrix. Various model systems ranging from pure polysaccharides of alginate to biofilms harvested directly from the growth medium have been char-acterised in humid conditions[1]. NAP-XPS also makes it possible to characterise nanoparticles in solution. Silver nanoparticles in aqueous solution were characterised and the Ag 3d-spectrum compared to spectra obtained of dried nanoparticles in UHV-conditions[2]. The binding energy of the Ag 3d-core level peak was shifted by 0,6 eV towards higher binding energy for suspended nanoparticles compared to the dried sample measured in UHV. This can be assigned to a change in surface potential at the water-nanoparticle interface. Metal-organic frameworks (MOFs) are suitable materials for gas storage of small molecules due to their nanoporous, crystalline structure. However, instability in humidity remains an issue for many types of MOFs. XPS-measurements of the MOF-structure HKUST-1 were performed in various NAP-conditions to assess the stability of the sample and its interaction with the gas molecules as water, methanol and pyridine. T2 - 5th AP-XPS Workshop CY - Berlin, Germany DA - 11.12.18 KW - Biofilms KW - E. coli KW - NAP-XPS KW - Metal organic frameworks KW - Nanoparticles PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/47060 AN - OPUS4-47060 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany