TY - GEN A1 - Bandow, Nicole T1 - Determination of the eco-toxicological risk of eluates of steel coated with reactive flameproof coatings N2 - Flame retardants are increasingly used in consumer products as e.g. electronics and furniture as well as in construction. Along with the increased usage, concerns about negative effects of flame retardants on human health and the environment have been raised. Concerning construction products one application for flame retardants is the furnishing of steel structures with reactive flameproof coatings. These coatings consist of a complex mixture of different chemicals, additives and solvents. For the evaluation of the risk possibly posed by their application to the environment, this whole mixture should be tested. Two different leaching tests were applied according to DIN/TS 16637-2 (sample permantly submerged in water) and DIN EN 16105 (immersion and drying cycles), respectively, which can be used for plate-like products. Eluates were divided into subsamples for the measurement of different parameters: pH-value, conductivity, total organic carbon (TOC), cation and anion concentration. For screening of organic compounds, aqueous samples were liquid/liquid extracted using three solvents with different polarity (toluene, hexane and ethylacetate). GC-MS chromatograms were recorded in the SCAN mode and mass spectra of the peaks were compared with spectras stored in the NIST library. Eluates of leaching test accroding to DIN CEN TS 16637-2 showed low electrical conductivity (20 to 150 µS/cm) and low release of cation and anions often near the LOQ. Diffferences could be observed for plates treated with the reactive coating at both sides and plates coated only at one side, while the other side is only furnished by the corrosive protection layer. Release of TOC and Zn was approx twice or 10 fold higher in the case of plates coated on one side. Furthermore, the comparison of the results for both types of plates showed that a large portion of the released compounds originate rather from the corrosion protection layer than from the reactive coating itself. Leaching tests according to DIN EN 16105 have not been finished yet, but first results show that the conductivity is much lower (1-4 µS/cm) than for the tests according to DIN/TS 16637-2 leading to the assumption that the release of compounds is lower. By comparison of the mass spectra with library data, mainly organic solvents as xylene, 1-methoxy-2-propanol acetate and n-btuyl carbamate have been tentatively identified so far in the first test fraction done by DIN CEN TS 16637-2. T2 - SETAC Europe 2016 CY - Nantes, France DA - 22.05.2016 KW - flame proof coatings KW - leaching KW - risk assessment PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/36356 AN - OPUS4-36356 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany