TY - CONF A1 - Gorbushina, Anna T1 - Studying colonization of stone surfaces – what can we learn from model biofilms growing in flow-through chambers? N2 - Soil formation on weathering rock surfaces is intrinsically connected with the development of primary microbial colonization at the atmosphere-lithosphere interface. A great number and variety of microorganisms is involved in these microbial communities, which are dominated by fungi, algae, cyanobacteria and heterotrophic bacteria. Rock-inhabiting life is ubiquitous on rock surfaces all around the world, but the laws of its establishment, and more important, quantification of its biodeterioration and geological input are possible only in well-controlled and simplified laboratory models. Here we would like to compare two model rock biofilm consisting of the heterotrophic and the phototrophic interacting partners. In the present work the growth of these model biofilms on diverse materials with different physical and chemical properties was investigated under well-controlled laboratory conditions. To clarify the role of environmental factors, the parameters temperature, light intensity and relative humidity were varied in growth test series. For an accelerated substrate colonization and to increase the biomass yield different flow-through chambers systems with semi-continuous cultures have been applied, simulating weathering conditions like flooding, desiccation and nutrient input. The biofilm development was studied by (i) confocal laser scanning and electron microscopy and (ii) qualitatively and quantitatively with respect to cell forms and biomass. A correlation between the presence of the model biofilm and mineral surface alteration as well as geochemical tracers of weathering were followed on various rock substrates (with differing geochemistry, porosity etc) exposed in another flow-through chamber, filled with crushed rock material. Under mentioned environmental conditions different types of flow-through chambers have been used and will be compared. T2 - Technoheritage CY - Cadiz, Spain DA - 21.05.2017 KW - Biofilm KW - Biodeterioration PY - 2017 AN - OPUS4-41136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -