TY - JOUR A1 - Nai, Corrado A1 - Wong, Helen A1 - Pannenbecker, A. A1 - Broughton, William J. A1 - Benoit, I. A1 - De Vries, R.P. A1 - Gueidan, C. A1 - Gorbushina, Anna T1 - Nutritional physiology of a rock-inhabiting, model microcolonial fungus from an ancestral lineage of the chaetothyriales (ascomycetes) T2 - Fungal genetics and biology N2 - Rock-inhabiting black fungi [also microcolonial or meristematic fungi (MCF)] are a phylogenetically diverse group of melanised ascomycetes with distinctive morphological features that confer extensive stress tolerance and permit survival in hostile environments. The MCF strain A95 Knufia petricola (syn. Sarcinomyces petricola) belongs to an ancestral lineage of the order Chaetothyriales (class Eurotiomycetes). K. petricola strain A95 is a rock-inhabiting MCF and its growth requirements were studied using the 96-well plate-based Biolog™ System under ~1070 different conditions (osmotic stress, pH growth optima, growth factor requirements and nutrient catabolism). A95 is an osmotolerant, oligotrophic MCF that grows best around pH 5. Remarkably, A95 shows metabolic activity in the absence of added nitrogen, phosphorus or sulphur. Correlations could be drawn between the known nutrient requirements of A95 and what probably is available in sub-aerial systems (rock and other material surfaces). Detailed knowledge of A95's metabolic requirements allowed formulation of a synthetic medium that supports strong fungal growth. PB - Elsevier CY - Amsterdam [u.a.] KW - Knufia petricola (syn. Sarcinomyces petricola) KW - A95 KW - Chaetothyriales (Eurotiomycetes) KW - Microcolonial fungi KW - Melanised rock-inhabiting fungi KW - Biolog™ system KW - Physiological characterisation PY - 2013 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/28865 AN - OPUS4-28865 SN - 1087-1845 SN - 0147-5975 SN - 1096-0937 VL - 56 SP - 54 EP - 66 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany