TY - CONF A1 - Ben Efraim, R. A1 - Vogel, Christian A1 - Leube, Peter A1 - Nir, O. A1 - Chaudhary, M. A1 - Futterlieb, M. A1 - Panglisch, S, A1 - Ronen, A, T1 - Comparison of PFAS Adsorption and Electro-Sorption Using Pristine and Functionalized MWCNTs N2 - Per- and polyfluoroalkyl substances (PFAS) have been extensively utilized in various industrial processes, resulting in elevated concentrations in landfills and drinking water reservoirs. Despite recognizing that shortchained PFAS are harmful, they are often overlooked. Short-chain PFAS are more challenging to remove via adsorption and membrane separation processes, and their detection is complex, thus creating a critical gap in understanding their environmental impact. To improve their environmental monitoring, we aim to improve short-chain PFAS adsorption and electro-sorption on novel carbon-based adsorbers such as pristine and functionalized multi-walled carbon nanotubes (MWCNTs) and assess their adsorption mechanisms. Based on the obtained result, we aim to develop a PFAS passive sampling device. T2 - German Israeli Water Technology Status Seminar CY - Koblenz, Germany DA - 18.06.2024 KW - Ground water KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sorption PY - 2024 AN - OPUS4-60329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -