TY - GEN A1 - Knabe, Nicole T1 - K. petricola and its melanin-deficient mutant: two ways to dissolve olivine N2 - Soil formation on rock surfaces is intrinsically coupled to primary microbial colonisation of the atmosphere-lithosphere interface. Rock-inhabiting microbial life is ubiquitous but the mechanisms of biofilm establishment and more importantly, quantification of its geological input are so far only possible to be studied in simplified, well-controlled laboratory experiments. In a previous study [1] a laboratory biofilm consisting of the phototrophic cyanobacterium Nostoc punctiforme ATCC 29133 and the rock-inhabiting ascomycete Knufia petricola A95 was tested for its mineral weathering potential. Mineral dissolution was enhanced in biotic experiments as compared to abiotic ones. Here the influence of K. petricola strain A95 and a recently constructed melanin deficient mutant (A95ΔPKS) were used to study the influence of fungal pigments on weathering of forsteritic olivine. The olivine with fungal biomass was submerged in a nutrient solution (pH 6.2) in batch-reactor flasks that were incubated for 90 d at 25°C and 90 μmol photons.m2.sec-1, while shaken at 150 rpm. qPCR was used to quantify the growth of fungi. Mineral dissolution was quantified by ICP-OES analysis of the liquid medium while SEM-EDX analysis of the solid phase was used to determine secondary mineral formation and visualise growth behaviour. Wild type and mutant accelerated dissolution of the mineral: over time both release more Mg and Si from olivine than the abiotic control. Also SEM revealed a closer physical contact of the wild type cells to the mineral and a higher production of EPS of the melanin mutant A95ΔPKS. This important difference in the ability of the wild type strain to adhere to the mineral surface might be crucial in maintaining a biologically modified environment. This biologically engineered habitat serves as a place where mineral dissolution as well as deposition of metabolic products (EPS + pigments) can impact the rock surface. We expect this study to increase the awareness on the impact of microbiology, and more specifically, rock-inhabiting fungi on mineral weathering. [1] Seiffert, F., Bouchez, J., von Blanckenburg, F., and Gorbushina, A. A. (2014). Microbial colonization of bare rocks: laboratory biofilm enhances mineral weathering. Proc. Earth Plan. Sci. 12,123–129.doi: 10.1016/j.proeps.2014.08.042 T2 - 29th Fungal Genetics Conference 2017 CY - Pacific Grove, CA, USA DA - 14.03.2017 KW - Knufia petricola KW - qPCR KW - Olivine PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/41254 AN - OPUS4-41254 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany