TY - GEN A1 - Pietsch, Franziska T1 - Selection of resistance in bacteria grown on antimicrobial surfaces in a multidrug environment N2 - Bacterial biofilms are regarded as the most common cause of chronic infections and are often associated with medical devices, such as implants and catheters. Bacteria growing in biofilms produce a protective, extracellular matrix, which enables them to tolerate much higher antimicrobial concentrations than free-living bacteria and survive long enough to acquire antimicrobial resistance. Preventive and therapeutic strategies against biofilm infections in clinical settings commonly involve the application of multiple antimicrobials: antimicrobial coatings on the biomaterials and systemically administered antibiotics. This frequent practice harbors the risk of the development of cross-resistance via shared resistance mechanisms between antimicrobials used in material coatings and administered antibiotics. Our goal is to determine how population dynamics within biofilms affect the transmission of resistance mutations. Specifically, we want to identify antimicrobial-antibiotic-combinations that select for and against antibiotic resistance in biofilms by following the population dynamics of resistant and susceptible strains in competition assays. Gaining a better understanding about resistance development and spread in persistent biofilm infections will enable us to provide clinical recommendations for improved administration of antibiotics/antimicrobials in combination with medical device materials to mitigate against biofilm associated antimicrobial resistance. Here, we will discuss our first findings on the effects of combinations of the carbapenem drug meropenem and various antimicrobials. T2 - The Antimicrobial Resistance on Biomaterials Workshop CY - St. Gallen, Switzerland DA - 25.10.2018 KW - Resistance KW - Antimicrobials PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/46526 AN - OPUS4-46526 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany