TY - GEN A1 - Epperlein, Nadja T1 - Influence of femtosecond laser produced nanostructures on biofilm growth on steel N2 - Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e. a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten dentical samples were laser-processed. These samples were subjected to microbial adhesion tests, investigating bacterial adhesion behavior on the laser structures in comparison to polished reference surfaces. Short term experiments (<24h) were carried out to determine initial biofilm development. E. coli as a typical bacterium representing pathogenic bacteria and Shewanella putrefaciens as metal corrosive bacterium were used for biofilm development analyses. Bacterial cell adhesion was determined microscopically after DAPI cell staining (DNA staining). Comparison of the coverage areas between nanostructured and polished surfaces revealed differences in cell adhesion behavior and biofilm structure. T2 - E-MRS 2016 Spring Meeting, Symposium C: "Laser-material interactions for tailoring future applications" CY - Lille, France DA - 02.05.2016 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Biofilms KW - Steel PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/36045 AN - OPUS4-36045 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany