TY - GEN A1 - Gorbushina, Anna T1 - Genetic manipulation of protective pigments in a rock-inhabiting model fungus Knufia petricola A95 N2 - Sub-aerial biofilms typically form on bare rock. They consist of 99% cell material and extracellular polymeric substances (EPS) metabolising at low water availability. Rock-inhabiting melanised fungi represent an important part of the microbial community in these environments, playing important roles in the colonisation of mineral surfaces, rock weathering and soil formation in the ecological/geochemical context. Different cellular stress responses make rock-inhabiting ascomycetes fit for survival under extremely changing irradiation, as well as water, energy sources and nutrient availability. Melanised, rock-inhabiting fungi possess multiple protective pigments, form facultative symbiotic associations with photobionts and weather minerals. Melanised fungi build a protective layer around the cell that is critical in adhesion to other living partners, for the colonisation of the substrate and in the subsequent damage of the colonised surface. We chose Knufia petricola (Chaetothyriales) as a model species to analyse colonisation of surfaces. The basic physiology of K. petricola strain A95 is studied, its full genome sequence has been prepared for annotation and methods for deleting specific genes have been established. Unique features of K. petricola including the protective pigments (melanin and carotenoids) and EPS/cell wall properties are now being dissected genetically. As K. petricola strain A95 is in the basic clade of Chaetothyriales, it is an ancestor of both important human pathogens including Exophiala and lichens from the Verrucariaceae family. For this reason studies with A95 can help clarify the basis of fungal pathogenicity – as well as explain interactions with microscopic phototrophic partners like unicellular green algae and cyanobacteria. With Knufia petricola we will establish a canon of experimental approaches to characterise and quantify fungi that actively contact inanimate solid materials. The set of methods developed for Knufia will be adapted to heavily melanised and EPS-producing ascomycetes and can be broadly applied to medically important as well as material-colonising fungi. T2 - Gordon Research Conference (Cellular & Molecular Fungal Biology) CY - Holderness, NH, USA DA - 19.06.2016 KW - Model fungus KW - Knufia petricola A95 KW - Biofilm PY - 2016 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/37812 AN - OPUS4-37812 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany