TY - GEN A1 - Riedel, Jens T1 - Airborne laser spark ionization N2 - A novel ionization scheme for ambient mass spectrometry is presented and discussed. Desorption and ionization are achieved by a quasi-continuous laser induced plasma (LIP) ignited in front of the atmospheric pressure interface of a time-of-flight mass spectrometer. This setup comprises the advantages of i) an ambient probe, ii) electro neutrality, iii) low power consumption, iv) a sufficient duty cycle, v) a ubiquitous plasma medium (air) and vi) high sensitivity caused by the high electron number densities. The plasma properties and operating conditions are investigated to understand the processes that lead to the formation of molecular ions. Comprehensive studies include optical emission spectroscopy, shadowgraphic shockwave visualization and time-of-flight mass spectrometry investigations. The observed MS signal (including reagent-ion signal, as well as analyte spectra) closely resembles the ionization behavior of other electrically-driven plasma-based ionization sources, such as DBD, LTP or DART. Conversely that means that although LIPs are commonly known to have temperatures way above 10.000 K and thus efficiently atomize and ionize molecules, MS spectra were obtained that showed the formation of intact molecular ions. For an insight into the LIP properties the optical emission of the LIP is examined and exhibits a pronounced degree of dissociation into atomic and ionic species, which reflects the higher temperature and electron density inside a LIP. Accordingly, rather elemental (ICP-type) than molecular spectra should be expected. However due to the absence of such ions, we conclude that the analyte does not enter the hot center of the plasma itself. Moreover, the initial, highlyexcited plasma species react cascade-like to lower energetic species via reactive collision with the surrounding atmosphere, which can then subsequently ionize molecules of interest. The concept potentially involves charge transfer, proton transfer, electron impact and photoionization. These assumptions are confirmed via the shadowgraphs of the expanding shockwave around the LIP. An effective spatial separation between the two regions is maintained by concentrically expanding pressure waves resulting in a strongly unidirectional diffusion. Additionally, the strictly outbound matter transport suggests a rarefaction inside the plasma region for each plasma event. T2 - IPOIMS CY - Menorca, Spain DA - 16.10.2017 KW - Laser KW - Ambient ionization KW - Plasma KW - Mass spectrometry PY - 2017 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/42610 AN - OPUS4-42610 UR - http://ipoims.com/downloads/Abstracts_IPOIMS_10102017.pdf AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany