TY - THES A1 - Nagelschmidt, Sven T1 - Ein Beitrag zur Zusammenführung von Zeit-Temperatur-Äquivalenz-Methoden: Entwicklung und Anwendung am Beispiel ausgewählter Materialverhalten für Zeit-Temperatur-Parameter und Zeit-Temperatur-Superpositionsprinzip N2 - In der Wissenschaft und Technik gibt es verschiedene Gründe, um auf Basis geeigneter Modelle in die Zukunft schauen zu wollen, beispielsweise um zu bewerten, ob ein Bauteil auch noch deutlich länger verwendet werden kann als eigentlich einmal vorgesehen. Eine Methode dieses zu tun, basiert auf dem Zeit-Temperatur-Äquivalenz-Prinzip, welches besagt, dass ein Zustand oder eine Materialeigenschaft gleichwertig bei verschiedenen Zeit-Temperatur-Kombinationen auftritt oder erreicht werden kann. Höhere Temperaturen verkürzen in der Regel die Dauer und umgekehrt. In den letzten Jahrzehnten hat sich ein umfangreiches Methodenspektrum für unterschiedliche Werkstoffe und Anwendungsgebiete entwickelt, sodass die Identifikation einer geeigneten Methode für einen konkreten Anwendungsfall oder neue Materialien eine Herausforderung darstellt. These: „Fortschrittlich wäre, existierende Methoden zusammenzuführen, methodenspezifische Vorteile zu kombinieren, um mit geringerem Aufwand ein geeignetes Prognosemodell zu entwickeln.“ Für metallische Werkstoffe und Polymere verläuft die Entwicklung von Prognosemodellen mit Zeit-Temperatur-Korrelation seit ca. 1940 parallel und unabhängig voneinander. In diesem Zusammenhang bekannte Methoden sind das Zeit-Temperatur-Superpositionsprinzip und Zeit-Temperatur-Parameter, wie der LARSON-MILLER-Parameter. Die jeweiligen methodischen Ansätze sind in der Regel anwendungs- und materialspezifisch und nur einzelnen Fachartikeln zu entnehmen. Eine zusammenführende thematische Übersicht und Untersuchung existierender Methoden wurden bislang nicht publiziert. Diese Forschungsarbeit verfolgt dahingehend einen neuartigen methodischen Ansatz und zeigt untersuchte Gemeinsamkeiten und Unterschiede als auch Analogien für das Zeit-Temperatur-Superpositionsprinzip und Zeit-Temperatur-Parameter anhand bestimmter Merkmale auf. Dafür wurden verschiedene analytische und grafische Ansätze verwendet. Ferner wird eine zusammenführende Untersuchung anhand eines rheologischen Materialmodells sowie anhand eines praktischen Anwendungsbeispiels gezeigt. Hergeleitet wurde u. a., dass das Prinzip der Zeit-Temperatur-Superposition für sogenanntes thermorheologisch einfaches und komplexes Verhalten konkreten Zeit-Temperatur-Parametern zugeordnet werden können. Und dadurch Verschiebefunktionen nicht nur in Abhängigkeit der Temperatur, sondern auch abhängig vom Zustand untersucht und definiert werden können. Ferner ermöglicht eine Skalierung der Zeit-Temperatur-Parameter auf eine Referenztemperatur physikalisch anschaulichere Auswertungen analog zum Zeit-Temperatur-Superpositionsprinzip. Untersuchungen zeigen, dass sich für einen konkreten Anwendungsfall die geeignetste Zeit-Temperatur-Äquivalenz-Methode aus einer gegenseitigen Abhängigkeit bzw. Kompatibilität einzelner Elemente, wie zugrunde gelegte Daten, Koordinatenachsenskalierung, ermittelte Zeit-Temperatur-Äquivalenz, Masterfunktionsansatz und der geforderten Interpolationsgüte herleitet. Der gewählte Forschungsansatz und die erzielten Ergebnisse bieten eine Plattform für die weitere Entwicklung von Prognosemodellen auf Basis des Zeit-Temperatur-Äquivalenz-Prinzips, insbesondere im Hinblick auf eine Zusammenführung und Kombination existierender Methoden. KW - Zeit-Temperatur-Äquivalenz KW - Zeit-Temperatur-Korrelation KW - Zeit-Temperatur-Superposition KW - Extrapolation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601530 DO - https://doi.org/10.14279/depositonce-20439 SP - 1 EP - 145 CY - TU Bibliothek online AN - OPUS4-60153 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -