TY - JOUR A1 - Xie, Y. A1 - Cui, Y. A1 - Wu, Dejian A1 - Zeng, Y. A1 - Sun, L. T1 - Economic analysis of hydrogen-powered data center JF - International Journal of Hydrogen Energy N2 - The data center needs more and more electricity due to the explosive growth of IT servers and it could cause electricity power shortage and huge carbon emission. It is an attractive and promising solution to power the data center with hydrogen energy source. The present work aims to conduct an economic analysis on the hydrogen-powered data center. Configurations of hydrogen-powered and traditional data centers are compared and the differences focus on backup power system, converter/inverter, fuel cell subsystem, carbon emission, hydrogen and electricity consumptions. Economic analysis is conducted to evaluate the feasibility to power the data center with hydrogen energy source. Results show that electricity price increasing rate and hydrogen cost are the main factors to influence economic feasibility of hydrogen-powered data center. When the electricity price keeps constant in the coming two decades, the critical hydrogen price is about 2.8 U.S. dollar per kilogram. If the electricity price could increase 5% annually due to explosive growth of electric vehicles and economy, critical hydrogen price will become 6.4 U.S. dollar per kilogram. Hydrogen sources and transportation determine the hydrogen price together. Hydrogen production cost varies greatly with hydrogen sources and production technologies. Hydrogen transport cost is greatly influenced by distances and H2 consumptions to consumers. It could be summarized that the hydrogen-powered data center is economic if hydrogen could be produced from natural gas or H2-rich industrial waste streams in chemical plant and data center could not be built too far away from hydrogen sources. In addition, large-scale hydrogen-powered data center is more likely to be economic. Solar hydrogen powered data center has entered into a critical stage in the economic feasibility. Solar hydrogen production cost has restrained the H2 utilization in data center power systems now, since it could be competitive only when more strict carbon emission regulation is employed, hydrogen production cost reduces greatly and electricity price is increasing greatly in the future. However, it could be expected solar hydrogen-powered system will be adopted as the power source of data centers in the next few years. KW - Hydrogen KW - Date center KW - Economic analysis PY - 2021 DO - https://doi.org/10.1016/j.ijhydene.2021.06.048 SN - 0360-3199 VL - 46 IS - 55 SP - 27841 EP - 27850 PB - Elsevier Ltd. AN - OPUS4-53658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -