TY - CONF A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Stark, Wolfgang T1 - Investigating low temperature properties of rubber seals T2 - WM2013 Conference (Proceedings) N2 - To achieve the required tightness levels of Containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive Container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of-40 °C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defrned precisely, what can cause problems during application. The temperature ränge where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste Containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature ränge of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the Standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test Setup to compare it with the results of the other tests. The experimental Setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. CY - Phoenix, Arizona, USA T2 - WM2013 Conference CY - Phoenix, Arizona, USA DA - 24.02.2013 PY - 2013 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/28853 AN - OPUS4-28853 SN - 978-0-9836186-2-1 SP - 1 EP - 12 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany