TY - JOUR A1 - Wagner, R. A1 - Wan, Wei A1 - Biyikal, Mustafa A1 - Benito-Pena, E. A1 - Moreno-Bondi, M.C. A1 - Lazraq, I. A1 - Rurack, Knut A1 - Sellergren, B. T1 - Synthesis, spectroscopic, and analyte-responsive behavior of a polymerizable naphthalimide-based carboxylate probe and molecularly imprinted polymers prepared thereof T2 - The journal of organic chemistry N2 - A naphthalimide-based fluorescent indicator monomer 1 for the integration into chromo- and fluorogenic molecularly imprinted polymers (MIPs) was synthesized and characterized. The monomer was equipped with a urea binding site to respond to carboxylate-containing guests with absorption and fluorescence changes, namely a bathochromic shift in absorption and fluorescence quenching. Detailed spectroscopic analyses of the title compound and various models revealed the signaling mechanism. Titration studies employing benzoate and Z-ʟ-phenylalanine (Z-ʟ-Phe) suggest that indicator monomers such as the title compound undergo a mixture of deprotonation and complex formation in the presence of benzoate but yield hydrogen-bonded complexes, which are desirable for the molecular imprinting process, with weakly basic guests like Z-ʟ-Phe. Compound 1 could be successfully employed in the synthesis of monolithic and thin-film MIPs against Z-ʟ-Phe, Z-L-glutamic acid, and penicillin G. Chromatographic assessment of the selectivity features of the monoliths revealed enantioselective discrimination and clear imprinting effects. Immobilized on glass coverslips, the thin-film MIPs of 1 displayed a clear signaling behavior with a pronounced enantioselective fluorescence quenching dependence and a promising discrimination against cross-analytes. PB - American Chemical Society CY - Washington, DC KW - Aminosäuren KW - Enantioselektivität KW - Fluoreszenz KW - Molekular geprägte polymere KW - Sensorfilme PY - 2013 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/27741 AN - OPUS4-27741 SN - 0022-3263 SN - 1520-6904 VL - 78 IS - 4 SP - 1377 EP - 1389 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany