TY - CONF A1 - Titscher, Thomas A1 - Unger, Jörg F. A1 - Oliver, J. T1 - Implicit/explicit (IMPL-EX) integration of the gradient enhanced damage model N2 - Isotropic damage models are widely used for the finite element simulation of softening materials, e.g. in mesoscale simulations of concrete. Regularization techniques must be employed to obtain a physically meaningful fracture energy upon mesh refinement. In regularized local damage models the strains localize in single elements allowing them to represent weak or strong discontinuities. In implicit integration schemes, these models can exhibit convergence Problems caused by an ill-conditioned tangent stiffness. This corresponds to the loss of ellipticity of the local rate equilibrium equations. Oliver et al. developed the implicit/explicit (IMPL-EX) integration scheme which overcomes These problems in local damage models. The internal damage driving variable is extrapolated based on previous implicitly determined values. This provides two main benefits: First, it always results in a symmetric positive semi-definite algorithmic stiffness matrix which precludes ill-posedness. Second, the system becomes incrementally linear and converges in one Newton-Raphson iteration. Even though the IMPL-EX algorithm, like explicit algorithms in general, requires smaller time steps than implicit schemes to obtain the same accuracy, it leads to a computational speedup. The gradient enhanced damage model by Peerlings is a nonlocal damage model that provides the regularization by limiting the curvature of the damage-driving strains. These models do not lose their ellipticity. However, structural instabilities often require tiny time steps and many iterations to obtain convergence. Here, the second aspect of the IMPL-EX scheme reduces the computational costs. This is shown in simulations of the complex geometry of concrete mesostructures, where only the gradient enhanced matrix material and linear elastic aggregates are considered. With regard to future mesoscale simulations, the remaining component of the mesoscopic structure, the interfacial transition zone and its degradation, has to be included. This adds a local damage model to the nonlocal problem. Thus, an IMPL-EX implementation has to be provided for both models to benefit from the increase of robustness and performance. T2 - ECCOMAS Congress 2016 CY - Crete, Greece DA - 05.06.2016 KW - Concrete KW - Mesoscale KW - IMPL-EX PY - 2016 AN - OPUS4-38671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -