TY - JOUR A1 - Rack, T. A1 - Zabler, S. A1 - Rack, A. A1 - Riesemeier, Heinrich A1 - Nelson, K. T1 - An in vitro pilot study of the abutment stability during loading in virgin and fatigue-loaded conical dental implants using synchrotron-based radiography JF - The international journal of oral & maxillofacial implants N2 - Purpose: The implant-abutment connection of a two-piece dental implant exhibits complex micromechanical behavior. A microgap is evident at the implant-abutment interface, even in the virgin state, and its width varies when an external mechanical load is applied. Materials and Methods: This study used high-resolution synchrotron-based radiography in combination with hard x-ray phase-contrast mode to visualize this gap and estimate its size. Commercially available implants with different internal conical implant-abutment connections were imaged. Pairs of implants were imaged as manufactured (new) and after fatigue loading (5 million cycles up to 120 N). Then, different static loads were applied at different angles relative to the implant-abutment assemblies, and the implant-abutment microgaps were measured and compared. Results: Microgaps existed in all systems. Fatigue loading extended the size of the microgap and increased the possibility of micromovement of the implant-abutment complex. The cone angle of the connection also influenced the stability of the abutment, with flatter cones appearing to be more stable. Conclusion: Cyclic loading at medium force (120 N) induces plastic deformation of titanium implants and abutments. KW - Dental implants KW - Digital radiography KW - Phase-contrast microscopy KW - Synchrotron radiography KW - Titanium PY - 2013 DO - https://doi.org/10.11607/jomi.2748 SN - 0882-2786 SN - 1942-4434 VL - 28 IS - 1 SP - 44 EP - 50 PB - Quintessence Publ. Co. CY - Lombard, Ill. AN - OPUS4-30546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -